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Abstract: The structural and biomechanical properties of collagen-rich ocular tissues, such as the

sclera, are integral to ocular function. The degradation of collagen in such tissues is associated

with debilitating ophthalmic diseases such as glaucoma and myopia, which often lead to visual

impairment. Collagen mimetic peptides (CMPs) have emerged as an effective treatment to repair

damaged collagen in tissues of the optic projection, such as the retina and optic nerve. In this study,

we used atomic force microscopy (AFM) to assess the potential of CMPs in restoring tissue stiffness in

the optic nerve head (ONH), including the peripapillary sclera (PPS) and the glial lamina. Using rat

ONH tissue sections, we induced collagen damage with MMP-1, followed by treatment with CMP-3

or vehicle. MMP-1 significantly reduced the Young’s modulus of both the PPS and the glial lamina,

indicating tissue softening. Subsequent CMP-3 treatment partially restored tissue stiffness in both the

PPS and the glial lamina. Immunohistochemical analyses revealed reduced collagen fragmentation

after MMP-1 digestion in CMP-3-treated tissues compared to vehicle controls. In summary, these

results demonstrate the potential of CMPs to restore collagen stiffness and structure in ONH tissues

following enzymatic damage. CMPs may offer a promising therapeutic avenue for preserving vision

in ocular disorders involving collagen remodeling and degradation.

Keywords: tissue biomechanics; extracellular matrix; extracellular matrix remodeling; collagen;

collagen mimetic peptides

1. Introduction

Collagen-rich ocular tissues such as the cornea and sclera function as a robust biome-
chanical framework to maintain eye structure and integrity, an important function achieved
through the laminar arrangement of collagen [1]. Degradation of collagen in the sclera
and scleral remodeling is linked to the progression of myopia, a prominent driver of vi-
sual impairment worldwide [2–5]. High myopia heightens the risk of sight-threatening
complications such as myopic macular degeneration and retinal detachment [6]. Scleral
remodeling and thinning, tissue degradation, and change in collagen fiber architecture
underlie axial elongation in myopia [7–9]. Similarly, in glaucoma, the leading cause of
irreversible blindness worldwide [10,11], the organization of collagen fibers in the peri-
papillary sclera (PPS) is altered in human patients and in animal models. Remodeling of
the extracellular matrix (ECM)—including collagen—also occurs at the optic nerve head
(ONH), a critical juncture in glaucoma pathophysiology [12,13]. Collagen fiber density is di-
minished in glaucomatous lamina cribrosa [14], changing the biological and biomechanical
properties of the tissue to impact retinal ganglion cell (RGC) vulnerability at ONH [15–19].

Int. J. Mol. Sci. 2023, 24, 17031. https://doi.org/10.3390/ijms242317031 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242317031
https://doi.org/10.3390/ijms242317031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5878-3955
https://orcid.org/0000-0002-7241-8647
https://orcid.org/0000-0001-5424-878X
https://orcid.org/0000-0003-4512-6355
https://orcid.org/0000-0002-8475-9959
https://doi.org/10.3390/ijms242317031
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242317031?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17031 2 of 12

An interdependence exists between the sclera and lamina cribrosa; collagen fibers of
the PPS intersect with collagen fibers at the border of the lamina cribrosa [20,21], together
forming the ONH connective tissue framework [22]. In rodents the glial lamina, which
is analogous to the lamina cribrosa in primates, maintains the structural integrity of the
ONH, despite having a less extensively structured collagenous ECM [14,23]. Matrix metal-
loproteinases (MMPs) are proteolytic enzymes responsible for ECM degradation, and play
an important role in collagen remodeling in ocular tissues during both homeostasis and
disease [3,24]. A large component of scleral and ONH tissue is collagen, which imparts
stiffness and structural integrity to tissue, as well as mediating important inflammatory
and cellular signaling [22,25–28]. Atomic force microscopy (AFM) offers a potent approach
to assess the biomechanical properties of tissue, including stiffness, without the need for
extensive tissue processing [29]. Using AFM, the Young’s modulus, a mechanical property
that is indicative of tissue stiffness, can be determined quantitatively [30]. In the eye, AFM
has been successfully used to evaluate stiffness across various ocular tissues and in a broad
range of mammals, including corneal stiffness in mice [31] and humans [32,33]; trabecular
meshwork stiffness in rats [34]; lens stiffness in mice [35] and non-human primates [36]; and
the sclera and optic nerve head stiffness in pigs [37,38], mice [39], rats [40], and humans [41].

Our previous work has highlighted the capacity of collagen mimetic peptides (CMPs)
to repair damage to tissue in the optic projection [42]. CMPs also promote corneal epithe-
lium healing and epithelial cell regeneration post acute injury [43], and corneal nerve repair
in a dry eye model [44]. A signature characteristic of intact collagen is a triple helical struc-
ture, which contains individual triple helices called tropocollagens [45]. Tropocollagens
include a set of three polypeptide chains comprising repeating sequences of glycine-x-y
triplets (x and y most commonly represent proline and hydroxyproline) [45]. CMPs are
short, single-stranded peptides that bind with high avidity to damaged collagen while
bypassing intact collagen structures [46–48]. CMPs enhance wound closure in mice through
improved collagen fibril alignment after damage by MMP [43,47]. The PPS and the glial
laminal tissue by design contain large amounts of collagen-rich ECM. Thus, CMPs are
largely sequestered by damaged collagen contained within the ECM. Given the established
capacity of CMPs to reinstate the structural and functional attributes of collagen to their
native states, here, we sought to determine the potential of CMPs in restoring the biome-
chanical properties of scleral and ONH tissue after enzymatic treatment. Using AFM, we
measured rat PPS and glial lamina stiffness at baseline, followed by MMP-1 treatment,
and again after CMP-3 or 1x PBS (vehicle) treatment. We found that MMP-1 effectively
reduces stiffness and increases levels of fragmented collagen in the PPS and glial lamina.
Application of CMP after MMP-1 treatment partially restores stiffness and reduces collagen
fragmentation compared to vehicle controls. Our results suggest that CMP partially restores
the structural and biomechanical properties of damaged collagen in scleral and glial lamina
tissue and may therefore represent a novel therapeutic avenue in ocular diseases where
collagen remodeling and degradation occur.

2. Results

2.1. Collagen Mimetic Peptide Restores Stiffness of the PPS after MMP-1

To determine tissue stiffness in the PPS, AFM measurements were acquired from dis-
tinct PPS locations within 300–500 µm from the ONH. Measurements were taken at baseline
in naïve tissue, and in the same location after MMP-1 incubation and EDTA quenching, and
subsequent CMP-3 or vehicle (1x PBS) treatments. Representative experimental datasets for
a specific location are shown in Figure 1A,B. Incubation with MMP-1 decreased the average
Young’s modulus by 38.3% (Figure 1C, Table 1), indicating diminished tissue stiffness.
CMP-3 reversed this trend, increasing the average Young’s modulus by 23.0% (Figure 1C,
Table 1), signifying at least a partial restoration of PPS stiffness. Application of vehicle after
MMP-1 treatment led to a further 26.0% reduction in average Young’s modulus, or a total
reduction of 54.3% from baseline (Figure 1C, Table 1).
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Figure 1. CMP-3 partially restores PPS stiffness after MMP-1 treatment. (A) Representative Young’s

moduli measurements in PPS from n = 1 of 3 animals. MMP-1 treatment reduced the stiffness of the

PPS (*, p ≤ 0.001), while CMP-3 partially restored tissue stiffness (#, p ≤ 0.001). (B) Representative

Young’s moduli measurements in PPS from n = 1 of 3 animals. The addition of vehicle (1x PBS) after

MMP-1 treatment gradually reduced tissue stiffness (*, #, p ≤ 0.001). (C) Pooled Young’s moduli

mean values from n = 3 animals show that MMP-1 treatment significantly reduced PPS tissue stiffness

compared to baseline (*, p ≤ 0.001). Treatment with CMP-3 after MMP-1 digestion partially restored

tissue stiffness (#, p ≤ 0.001), while the addition of vehicle after MMP-1 treatment further reduced

tissue stiffness ($, p ≤ 0.001).

Table 1. Young’s moduli values for PPS. Mean Young’s moduli values for PPS along with 95%

confidence interval. n indicates the number of individual AFM measurements from a total of 3 rats.

Sample Type Mean Young’s Modulus (kPa) 95% C.I. n

Baseline 9.500 0.161 6656
MMP-1 5.865 0.124 5120
CMP-3 7.214 0.101 2938

1x PBS (vehicle) 4.345 0.323 1536
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2.2. Collagen Mimetic Peptide Restores Stiffness of the Glial Lamina after MMP-1

Glial lamina stiffness measurements were determined as outlined for the PPS. Repre-
sentative experimental data are shown in Figure 2A,B. The average Young’s modulus of
the glial lamina decreased by 57.2% after MMP-1 treatment; CMP-3 again partially restored
stiffness of the tissue (49.5% increase; Figure 2C, Table 2). Although stiffness increased by
13.2% with application of the vehicle (Figure 2C, Table 2), it did not increase the stiffness of
the tissue to the same magnitude as observed with CMP-3.
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ff ff

ff
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ff ≤
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Figure 2. CMP-3 partially restores glial lamina stiffness after MMP-1 treatment. (A) Representative

Young’s moduli measurements in glial lamina from n = 1 of 3 animals. MMP-1 treatment reduced

stiffness of the PPS (*, p ≤ 0.001), while CMP-3 restored tissue stiffness (#, p ≤ 0.001). (B) Repre-

sentative Young’s moduli measurements in glial lamina from n = 1 of 3 animals. The addition of

vehicle (1x PBS) after MMP-1 treatment gradually reduced tissue stiffness (*, #, p ≤ 0.001). (C) Pooled

Young’s moduli mean values from n = 3 animals show that MMP-1 treatment significantly reduced

glial lamina tissue stiffness compared to baseline (*, p ≤ 0.001). Treatment with CMP-3 after MMP-1

digestion partially restored tissue stiffness (#, p ≤ 0.001), while the addition of vehicle after MMP-1

treatment increased tissue stiffness to a smaller extent ($, p ≤ 0.001).
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Table 2. Young’s moduli values for glial lamina. Mean Young’s moduli values for PPS along with

95% confidence interval. n indicates the number of individual AFM measurements from a total of

three rats.

Sample Type Mean Young’s Modulus (kPa) 95% C.I. n

Baseline 13.096 0.248 9082
MMP-1 5.602 0.090 2304
CMP-3 8.373 0.253 2229

1x PBS (vehicle) 6.342 0.151 1024

2.3. Collagen Mimetic Peptide Mitigates Collagen Fragmentation

To assess collagen fragmentation, we immunolabeled rat ONH tissue after AFM
analysis and imaged the glial lamina (Figure 3A; box 1) or PPS regions of interest (Figure 3A;
box 2). Collagen type-1 is visualized in green, with fragmented collagen highlighted in
red using an R-CHP peptide; an increase in red fluorescence is indicative of increased
fragmented collagen. In naïve glial lamina tissue at baseline, collagen-1 was evident
with low levels of fragmentation (Figure 3B(1a)). After MMP-1 digestion and vehicle
addition, the level of fragmented collagen increased dramatically (Figure 3B(1b)). After
collagen digestion with MMP-1 and subsequent CMP-3 addition, the level of fragmented
collagen was reduced and comparable to the baseline (Figure 3B(1c)). Similarly, in the
PPS, levels of fragmented collagen were low at baseline (Figure 3B(2a)). After MMP-1
and vehicle addition, fragmented collagen levels increased (Figure 3B(2b)). After CMP-3
addition to MMP-1 digested tissue, the levels of fragmented collagen were again reduced
(Figure 3B(2c)).

 

Figure 3. CMP repairs fragmented collagen in PPS and glial lamina. (A) Representative confocal

image of rat ONH tissue labeled for collagen-1 (green) and fragmented collagen (R-CHP; red).

Dashed boxes show regions of interest including (1) glial lamina and (2) PPS. (B) Representative

confocal images of ROIs from glial lamina (1a–1c) and PPS (2a–2c). In naïve glial lamina, low levels

of fragmented collagen were observed (B(1a)). After MMP-1 digestion, collagen fragmentation

increased (B(1b)). CMP-3 treatment of MMP-1-degraded tissues reduced fragmented collagen levels

(B(1c)). In naïve PPS, there were low levels of fragmented collagen (B(2a)). After MMP-1 digestion,

increased fragmented collagen was evident (B(2b)). CMP-3 treatment of MMP-1-degraded tissues

reduced fragmented collagen levels (B(2c)).
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3. Discussion

Scleral and ONH tissue integrity is critical to the maintenance of eye structure and
the support of RGC axons as they traverse the ONH and travel to the brain. Breakdown of
ONH and scleral tissue integrity through damage to collagen is evident in diseases that lead
to vision loss, including myopia and glaucoma [7,9,14,17]. Collagen degradation with aging
and disease is often attributed to increases in tissue MMP activity that promotes collagen
breakdown and triggers tissue remodeling [3,24]. Our work with CMPs has demonstrated
a broad capacity for their use in tissue repair of the eye and optic projection. In this study,
we sought to explore whether CMPs had the capacity to directly repair damaged collagen
in scleral and glial lamina tissues. To do this, we measured tissue stiffness using AFM and
visualized fragmented collagen using immunohistochemistry.

Our results here show that degradation of scleral and ONH tissue ex vivo by MMP-1
effectively decreased tissue stiffness as measured by AFM (Figures 1 and 2). This was
expected, since proteolytic cleavage of collagen type I fibrils by MMP-1 reduces stiffness
in vitro [49], and enzymatic treatment of porcine sclera and cornea reduces tissue stiffness
and collagen organization [37,50]. Our results also show that a reduction in glial lamina
and scleral tissue stiffness after MMP-1 addition coincides with increased binding of
fragmented collagen, as detected by increased fluorescence in such tissues due to the
presence of a collagen peptide (R-CHP) that binds specifically to fragmented collagen
(Figure 3). These results suggest that the reduction in stiffness observed after MMP-1 was
indeed due to collagen fragmentation in the tissue. Application of CMP-3 to tissue after
MMP-1 degradation partially restored scleral and glial lamina stiffness (Figures 1 and 2, and
Tables 1 and 2). Interestingly, the addition of vehicle (1x PBS) after MMP-1 led to a further
reduction in the Young’s modulus of the sclera, possibly due to intrinsic MMP activity
or a lack of quenching of the MMP-1 reaction by EDTA (Figure 1, Table 1). In the glial
lamina, however, the addition of vehicle led to a slight increase in tissue stiffness (Figure 2,
Table 2). The biological composition of scleral and glial lamina tissues is distinct, so it is not
unexpected that they may behave differently under experimental conditions. Nevertheless,
the addition of CMP-3 partially restored tissue stiffness in both the glial lamina and PPS,
and such stiffening was associated with a reduction in the level of fragmented collagen in
the tissue (Figure 3). CMP-3 has a high affinity for damaged collagen, intercalating into
collagen strand breaks, repairing the native triple helical structure, and reducing collagen
strand breaks or fragmentation directly [48]. Repairing collagen structure may also have
important implications for downstream immune signaling, which could in turn alter the
expression and activation of tissue-resident MMP enzymes to impact collagen stiffness and
levels of fragmentation [51–53].

Our demonstration that CMPs have the potential to stiffen collagen-rich ocular tissues
could have important implications for ocular diseases that are characterized in part by
collagen degradation and tissue remodeling. For instance, in myopia, increases in scleral
MMP activity accelerates scleral remodeling, leading to scleral thinning and progression of
the disease [54]. In animal models of myopia, preventing collagen damage with TIMP-2
reduced scleral collagen degradation and development of myopia [55]. Myopia is also
associated with decreased collagen-1 expression [56] and inhibition of collagen crosslinking
accelerated myopia development [57]. Furthermore, sub-tenon injections of genipin to
increase scleral crosslinking in a guinea pig model of myopia prevented myopia progres-
sion [58]. Similarly, glaucoma is associated with ONH tissue alterations that challenge the
health of the optic nerve [22]. Interestingly, the incidence of myopia increases the risk of
glaucoma independently of intraocular pressure (IOP) and other risk factors [59]. Collagen
is the predominant component of both scleral and ONH tissue. There is evidence that
scleral and lamina cribrosa stiffness increases with age and with glaucoma [49,60]. Scleral
crosslinking in mice using glutaraldehyde alters the pressure–strain relationship of tissue
at the ONH, leading to nerve degeneration [61]. However, it is argued that reduced strain
at the lamina cribrosa is potentially protective to the nerve [62,63]. Furthermore, elsewhere
in the CNS (cerebral cortex and spinal cord), ECM tissue softens after injury [51].
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In summary, our results suggest that CMP-3 has the capacity to increase the stiffness
of ONH tissue and reduce levels of collagen fragmentation after MMP-1 digestion. These
results hint at a possible therapeutic role for CMPs in myopia or glaucoma. An understand-
ing of the involvement of tissue stiffness in ocular diseases that lead to visual impairment,
including glaucoma and myopia, is required for developing new treatments that address
changes in the pliability of collagen. Since collagen damage in tissue may be evident early
in these diseases, repair of damaged collagen using mimetic peptides may be an effective
preventative therapeutic approach.

4. Materials and Methods

4.1. Animals

For all experiments, male Brown Norway rats (n = 6; 3 rats for PPS measurements
and 3 rats for glial lamina measurements) aged 3 months were obtained from Charles
River Laboratories (Wilmington, MA, USA). This study was conducted in accordance
with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.
Animal protocols were approved by the Institutional Animal Care and Use Committee
of the Vanderbilt University Medical Center. Rats were housed in a facility managed by
the Vanderbilt University Division of Animal Care, with ad libidum access to water and
standard rat chow and a 12 h light cycle (lights on at 6:30 a.m. and off at 6:30 p.m.).

4.2. Tissue Preparation

Rats were anesthetized with isoflurane before decapitation. Both eyeballs were rapidly
enucleated and placed in ice-cold 1x phosphate-buffered saline (PBS). Eyes were bisected
posterior to the equator, the anterior segment and lens were removed, and ONH tissue was
embedded in an Optimal Cutting Temperature medium (OCT, Fisher Healthcare, reference
# 4585) for cryo-sectioning. Sagittal eye sections through the ONH were cut at 20 µm
thickness and were mounted on Poly-D-Lysine (PDL; Cat no: A38904-01–ThermoFisher
Scientific, Frederick, MD, USA) coated glass coverslips. Samples were stored on dry ice
until same-day AFM imaging.

4.3. Atomic Force Microscopy

ONH tissue sections on coverslips were mounted onto the AFM equipment so that
the PPS and glial lamina were clearly in view (Figure 4). Tissue stiffness was acquired
using PeakForce Quantitative Nanomechanical Mapping (QNM) in Fluid AFM imaging
mode (Bruker, Santa Barbara, CA, USA). A SAA-SPH-5UM probe (Bruker, Santa Barbara,
CA, USA) with a 5 µm end radius and a 0.25 N/m nominal spring constant was used to
indent the PPS tissue to measure PPS stiffness. A CP-PNPL-SiO-D probe (Bruker, Santa
Barbara, CA, USA) with a 5 µm tip radius and 0.08 N/m spring constant was used to
measure glial lamina stiffness. Force–displacement curves were fit to the Hertz model
assuming a Poisson’s ratio of 0.5 using the Bruker curve fitting software to determine
the elastic modulus (Young’s modulus). Before data collection, the probe was calibrated
in liquid using the thermal tune method with the addition of 1x PBS [64]. In each tissue
location, force volume maps were acquired using a scan size of 10 µm, with 16 samples/line
for a total of 256 force–displacement curves, at a scan rate of 1 Hz. Up to 6 distinct PPS
locations approximately 300–500 µm away from the edge of the ONH were used for baseline
measurements in each sample, and up to 5 distinct locations per sample were taken as
baseline measurements in the glial lamina. After MMP-1 and CMP-3 or 1x PBS treatment,
the same locations were remeasured to determine changes in tissue stiffness.
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Figure 4. AFM microscope view. (A) Rat ONH cryosection with major tissue landmarks including

retina, glial lamina (GL), and peripapillary sclera (PPS) indicated. (B) ROIs outlined with dashed

boxes demonstrate where Young’s moduli measurements were taken. Scale bars as indicated.

4.4. Matrix Metalloproteinase Treatment

Recombinant human MMP-1 (Biolegend, catalog # 592902), was used to degrade tissue
collagen at a final concentration of 0.05 mg/mL (sclera) or 0.005 mg/mL (glial lamina) in
1x PBS. For PPS stiffness measurements, ONH tissue was treated with 15 µL MMP-1 (0.05
mg/mL) for 30 min at 37 ◦C. The sample was washed with 1x PBS before the reaction was
quenched with 75 µL of 0.1 M EDTA (Invitrogen, reference # 15575-038) in PBS for 15 min at
room temperature. For glial lamina stiffness measurements, 15 µL MMP-1 (0.005 mg/mL)
was added for 20 min at 37 ◦C, washed with 1x PBS and quenched with 75 µL of 0.1 M
EDTA in PBS for 15 min at room temperature. Finally, samples were washed with 1x PBS
and AFM data was collected.

4.5. Collagen Mimetic Peptide or Vehicle Treatment

After measuring tissue stiffness post-MMP-1 treatment, 75 µL of CMP-3 at a final
concentration of 200 µM or an equivalent volume of 1x PBS (vehicle) was added for 60 min at
37 ◦C. Samples were then washed with 1x PBS, and final AFM measurements were acquired.
CMP-3 is a 21-residue single-strand peptide consisting of a 7-repeat sequence of proline
(Pro) and glycine (Gly) as (Pro-Pro-Gly)7. This structure is similar to CMPs known for their
high-affinity intercalation with damaged type I collagen in vitro and in vivo [46–48]. It
was supplied by Bachem, AG (Germany) and was produced using standard solid-phase
peptide synthesis (SPPS) chemistry, followed by purification through preparative liquid
chromatography on a reversed-phase column with acetonitrile (ACN) gradient elution and
UV detection at 230 nm. Collected fractions were analyzed via ultra-high-performance
liquid chromatography (UHPLC), pooled, and diluted with water to reduce their ACN
concentration. Further purification included salt exchange and microfiltration through a
0.45 µm membrane filter, followed by lyophilization, resulting in a pre-clinical use product
with a purity range of 90.5–90.7%. A flow diagram showing tissue endpoints and treatments
is shown in Figure 5 for clarity.
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Figure 5. Schematic outlining the study experimental design. Tissue stiffness measurements are

acquired at baseline, after 20 or 30 min of matrix metalloprotease-1 (MMP-1) treatment and 15 min of

quenching with EDTA, and after 60 min of collagen mimetic peptide-3 (CMP-3) or vehicle (1x PBS)

treatment.

4.6. Immunohistochemistry

After AFM measurements, tissues were fixed in 4% paraformaldehyde (PFA) solution
for 5 min and washed with 1x PBS at room temperature. Auto-fluorescence was quenched
by adding 0.1% sodium borohydride/1x PBS for 30 min at room temperature. Tissue
was washed 2X for 10 min per wash in 1x PBS solution. Tissue was then blocked in a
solution containing 5% normal donkey serum (NDS; 017-000-121, Jackson ImmunoResearch
Laboratories, Inc., West Grove, PA, USA) and 0.1% Triton X-100/1x PBS for 1 h at room
temperature. After blocking, the tissue was placed in primary antibody solution (3%
NDS/0.1% Triton X-100 in 1x PBS) with 20 µm collagen-hybridizing peptide (R-CHP, Cy3
Conjugate; 3Helix, Salt Lake City, UT, USA) and 1:100 anti-mouse collagen-1 (Ab6308,
Abcam, Waltham, MA, USA). Samples were covered with paraffin overnight at 4 ◦C
protected from light. The next day, the tissue was washed 3X for 10 min per wash in 1x
PBS. Tissue was then placed in a secondary antibody solution (1% NDS/0.1% Triton X-100
in 1x PBS) containing 1:400 Donkey anti-mouse Alexa Fluor-488 (715-546-150, Jackson
ImmunoResearch Laboratories, Inc., West Grove, PA, USA) for 2 h at room temperature,
protected from light. Tissue was then washed 3X in 1x PBS for 10 min per wash and
mounted in DAPI Fluoromount-G (0100-20, SouthernBiotech, Birmingham, AL, USA) for
confocal imaging.

4.7. Optic Nerve Head Tissue Imaging

Fluorescent optic nerve head tissue images were taken using an Olympus FV-1000
inverted confocal microscope and a 20X or 40X objective.

4.8. Statistical Analysis

All data are presented as mean ± 95% C.I. unless otherwise stated. Graphs were
generated, and statistical analyses were conducted using GraphPad Prism version 9.0
(GraphPad Software, San Diego, CA, USA). Normality was assessed using the Shapiro–
Wilk test of normality. If the data demonstrated a normal distribution, we conducted
parametric statistical analyses, such as a t-test and analysis of variance (ANOVA). In cases
wherein the data did not follow a normal distribution, we employed non-parametric tests,
i.e., the Mann–Whitney test and the Kruskal–Wallis test followed by Dunn’s multiple
comparisons test, as specified in the figure legends. Statistical significance was defined as a
p-value of 0.05 or less.
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